

Education

2017–present	Doctorate of Philosophy (Physics) Expected completion date: 25 January 2021. Thesis topic: Optical tweezers: experiments and modelling.	The University of Queensland
2016–2017	Bachelor of Science (Honours) Research & Coursework, Physics Field of Study Thesis topic: Finite difference time domain method for modelling optical tweezers.	The University of Queensland
2012–2015	Bachelor of Science Physics and Computational Science dual major Completed Advanced Studies Program in Science (ASPiNS)	The University of Queensland

Research fields and interests

- Computational science and physics
 - * Modelling physical/optical phenomenon
 - * Writing high performance computer codes
 - * Procedural computer graphics and rendering
 - * Novel/interesting computing hardware (Intel Phi coprocessors, GPUs, HPC architectures)
 - * Computer languages and design patterns
 - * Writing codes for computer controlled experiments
- Experimental physics
 - * Optical tweezers
 - * Engineered light fields
 - * Two photon photo-polymerization
 - * Lab-on-a-chip optical tweezers systems
 - * Imaging through fibres
- Computation in physics education and learning
 - * Computer simulations to demonstrate physical concepts
 - * Computational exercises in undergraduate physics education

Technical skills

- Competent in various programming languages including C/C++, MATLAB and Python.
- Familiar with computer aided design (CAD) programs (AutoCAD and Autodesk Inventor).
- Experienced using Linux based operating systems. Fedora is currently my operating system of choice.
- Familiar with version management systems (experience using git and svn).
- Experience using Word, Powerpoint, L^AT_EX and various spreadsheet programs.
- Familiar with website tools such as WordPress and Jekyll (see <https://physics.uq.edu.au/omg> for an example of a Jekyll website I developed). Competent with CSS and HTML.

Personal Interests/Hobbies

→ Rock climbing → Scuba-diving → Hiking → Programming/Languages → Computer graphics

Research experience

2017–present **PhD** with Optical Micro-manipulation Group, The University of Queensland. Working on simulations of optical tweezers including a new release of our groups Optical Tweezers Toolbox and a new toolbox for simulating and controlling spatial light modulators (OTSLM). Gained experience co-supervising undergraduate/honours/masters students and collaborating with other research groups.

2016–2017 **Honours** with Optical Micro-manipulation Group, The University of Queensland. Developed a finite difference time domain computer code in C++ for simulating optical tweezers. The code extends the range of problems that can be simulated by the optical micro-manipulation group.

2013–2015 **Research projects** with EQuS Atom Optics Lab, The University of Queensland. Various projects related to incorporating a digital micromirror device (DMD) for generating interesting optical potentials for manipulating Bose-Einstein Condensates (BEC). The projects involved:

- Determining project feasibility by assembling an optical system using a DMD evaluation module.
- Selecting and purchasing a high speed/high resolution DMD for incorporation into the BEC experiment.
- Installing the DMD and BEC imaging system.
- Designing and installing a cooling system for the DMD and laser system.
- Writing computer codes to control the DMD and optimise DMD patterns.
- Building electronics for controlling parts of the system.

 The project included components for the ASPIInS program and capstone physics course including multiple reports and a forum style presentation at UQ.

2013 **Research project** with Dr Michael Bromley at The University of Queensland. Working on a Joomla based web interface for computing dipole- and hyper- polarizabilities for different atomic energy levels. Completed as part of the ASPIInS program including forum style poster presentation.

2012–2013 **Research project** with Dr Michael Bromley at The University of Queensland. Developing a pipeline for visualising 5-dimensional wave functions. Involved working with FORTRAN, Python and ParaView.

Employment

2015–2019 **Equipment manager and risk assessor for UQ Science Demo Troupe**
 School of Mathematics and Physics, The University of Queensland.
 Responsibilities involved writing risk assessments, maintaining equipment and demonstrations, planning new experiments, working in department chemistry lab.

2017–2018 **Casual Learning Designer**
 School of Mathematics and Physics, The University of Queensland.
 Development of simulations for the Science and Mathematics Simulations (SciMS) project, <https://teaching.smp.uq.edu.au/scims/>. Development of simulations and teaching material for PHYS2055 and PHYS1171.

2013–2018 **Casual Physics Tutor**
 School of Mathematics and Physics, The University of Queensland.
 Further details under tutoring experience.

2014–2015 **Casual Research Assistant**
 EQuS Atom Optics Lab, The University of Queensland.
 Further details under research experience.

Tutoring experience

PHYS3071	Computational Physics	Semester 1, 2017 & 2018
COSC3000	Visualization, Computer Graphics & Data Analysis	Semester 1, 2017
COSC2500	Numerical Methods in Computational Science	Semester 2, 2013, 2015 & 2017
JPhO	UQ Junior Physics Olympiad (Volunteer)	June/July, 2010–2017

Selected feedback from students (COSC2500):

- “Mr Isaac Lenton is my favourite tutor for this course. He is well organised and come prepared to the class. He [was] able to answer any sort of questions well. He is very approachable. He has wide knowledge about this course.”
- “Clearly explained concepts and clarified difficulties I was having in the material.”
- “Didn’t force everyone to solve a problem in the same way – helped us to solve the problems in our own ways.”

Supervision experience

2019/2020	Co-supervision of Oscar Smee, Lauren McQueen, Ling Xu, Connor Bennett, and Lachlan Hamilton. 6-8 week summer projects. Developed project descriptions with Timo Nieminen. Gained experience running weekly meetings.
2019	Co-supervision Olivier Neeb , French masters student, experimental.
2018/2019	Co-supervision Carter Fairhall , summer student, experimental/computational.
2018	Jackson Co-supervision Calvet-Lane , SCIE/PHYS3051 projects, experimental.
2018	Co-supervision Gabriel Hogie , French masters student, experimental.
2018	Co-supervision Declan Armstrong , honours student, experimental.
2018	Co-supervision Kyriakos Tapinou , capstone student, computational.

Outreach, Talks & Volunteer experiences

- **Lab tours** various groups ranging from 4 to 15 students with varying ages from high-school to post-graduate.
- **Science outreach trips** Multi-day road trips to schools and community centres in rural and costal Queensland talking about and demonstrating physics.
- **Public speaking/workshops**
 - * UQ Science demo troupe, multiple performances and workshops for different age groups ranging from primary-school to faculty events. Various group sizes between 10 and 100 people.
 - * *Life as a PhD student*, panel discussion for approximately 30 high school students (2020).
 - * Assistant at **getafix** (the school of Mathematics and Physics faculty cluster) information session. (multiple years).
 - * Speaking to perspective honours students about my experience doing honours (approx. 20 students, Sep. 2018).
- **Contributions to course notes** for COSC2500.

Publications

Summary of citations (as listed on Google Scholar):

- Total citations: 142
- h-index: 4

Peer-reviewed journal articles

1. **ICD Lenton**, AB Stilgoe, TA Nieminen, H Rubinsztein-Dunlop
OTSLM Toolbox for Structured Light Methods
 Computer Physics Communications, 107199 (2020)
2. **ICD Lenton**, D Armstrong, AB Stilgoe, TA Nieminen, H Rubinsztein-Dunlop
Orientation of swimming cells with annular beam optical tweezers
 Optics Communications 459, 124864 (2020)
3. YL Pan, A Kalume, **ICD Lenton**, TA Nieminen, AB Stilgoe, H Rubinsztein-Dunlop, LA Beresnev, C Wang, JL Santarpia
Optical-trapping of particles in air using parabolic reflectors and a hollow laser beam
 Optics Express 27 (23), 33061-33069 (2019)
4. **ICD Lenton**, AB Stilgoe, H Rubinsztein-Dunlop, TA Nieminen
Visual guide to optical tweezers
 European Journal of Physics **38**, 034009 (2017)
5. AAM Bui, AB Stilgoe, **ICD Lenton**, LJ Gibson, AV Kashchuk, S Zhang, H Rubinsztein-Dunlop, TA Nieminen
Theory and practice of simulation of optical tweezers
 Journal of Quantitative Spectroscopy and Radiative Transfer (2016)
6. G Gauthier, **ICD Lenton**, N McKay Parry, M Baker, MJ Davis, H Rubinsztein-Dunlop, TW Neely
Direct imaging of a digital-micromirror device for configurable microscopic optical potentials
 Optica **3**(10), 1136-1143 (2016)

Open source software & contributions

1. **ICD Lenton** et al. *Optical tweezers toolbox*
 Updated release of the optical tweezers toolbox including a more user-friendly object orientated interface, graphical user interface and additional features.
<https://github.com/ilent2/ott>
2. **ICD Lenton** et al. *OTSLM Toolbox for Structured Light Methods*
 Toolbox for simulating and controlling spatial light modulators with a focus on optical tweezers experiments.
<https://github.com/ilent2/otslm>
3. **ICD Lenton**. *sphinx-matlabdoc-builder*
 Developed an extension for sphinx to build Matlab style HTML documentation.
<https://github.com/ilent2/sphinx-matlabdoc-builder>
4. Various contributors. *sphinxcontrib.matlabdomain*
 Added `mlapp` documenter and package prefix options.
<https://github.com/sphinx-contrib/matlabdomain>

Other (non-peer-reviewed) publications

1. **ICD Lenton**
 User manual: *OTSLM Toolbox for Structured Light Methods*
 Available from <http://otslm.readthedocs.org/> (2020)

2. **ICD Lenton**, AAM Bui, TA Nieminen, AB Stilgoe, H Rubinsztein-Dunlop
Conference paper: *Optical tweezers toolbox: full dynamics simulations for particles of all sizes*
Optical Trapping and Optical Micromanipulation XV 10723, 107232B (2018)
3. **ICD Lenton**, D Armstrong, J Calvert-Lane, TA Nieminen, AB Stilgoe, H Rubinsztein-Dunlop
Conference paper: *Measuring the motility and drag forces acting on biological particles using optical tweezers*
Optical Trapping and Optical Micromanipulation XV 10723 (2018)
4. IA Favre-Bulle, S Zhang, AV Kashchuk, **ICD Lenton**, LJ Gibson, AB Stilgoe, TA Nieminen, H Rubinsztein-Dunlop
Optical tweezers bring micromachines to biology
Optics and Photonics News 29 (4), 40-47 (2018)

Conference presentations

1. **ICD Lenton**, AB Stilgoe, TA Nieminen, H Rubinsztein-Dunlop, Understanding particle trajectories by mapping optical force vortices. **Talk** presented at SPIE Photonics West, San Francisco, California, USA (2020).
2. **ICD Lenton**, TA Nieminen, AB Stilgoe, and H Rubinsztein-Dunlop, Meta-trapping: optical forces on meta-materials. **Talk** presented at the 18th Electromagnetic and Light Scattering Conference, Hangzhou, China (2019).
3. **ICD Lenton**, G Volpe, TA Nieminen, AB Stilgoe, and H Rubinsztein-Dunlop, Shining light on particle dynamics with machine learning. **Talk** presented at the 18th Electromagnetic and Light Scattering Conference, Hangzhou, China (2019).
4. **ICD Lenton**, AB Stilgoe, TA Nieminen, H Rubinsztein-Dunlop. A new dynamic optical tweezers toolbox. **Talk** presented at AIP Congress, Perth, Australia (2018).
5. **ICD Lenton**, AB Stilgoe, TA Nieminen, H Rubinsztein-Dunlop. OTSLM: A toolbox for production of flexible structured light. **Poster** presented at AIP Congress, Perth, Australia (2018).
6. **ICD Lenton**, D Armstrong, J Calvert-lane, TA Nieminen, AB Stilgoe and H Rubinsztein-Dunlop. Measuring the motility and drag forces acting on biological particles using optical tweezers. **Poster** presented at SPIE, USA (2018).
7. **ICD Lenton**, AAM Bui, TA Nieminen, AB Stilgoe and H Rubinsztein-Dunlop. Optical Tweezers Toolbox: full dynamics simulations for particles of all sizes. **Poster** presented at SPIE, USA (2018).
8. **ICD Lenton**, AA Bui, A Kashchuk, T Nieminen, A Stilgoe and H Rubinsztein-Dunlop. *Optical tweezers for direct measurement of swimming forces of living cells*. **Poster** presented at IONS KOALA, The University of Queensland, Brisbane, Australia (2017).
9. **ICD Lenton**, AA Bui, A Kashchuk, T Nieminen, A Stilgoe and H Rubinsztein-Dunlop. *Optical tweezers simulations using finite difference time domain method*. **Poster** presented at Symposium on New Frontiers in Optical Trapping and Optical Manipulation, The Institute of Photonic Sciences (ICFO), Barcelona, Spain (2017).
10. **ICD Lenton**, TA Nieminen, AB Stilgoe, H Rubinsztein-Dunlop. *Finite difference time domain method for computationally modelling optical trapping*. **Talk** presented at the joint Asia Pacific Physics Conference and Australian Institute of Physics Congress, Brisbane, QLD, Australia (2016).
11. **ICD Lenton**, N McKay Parry, TW Neely, H Rubinsztein-Dunlop. *Optimisation of digital micromirror device patterns for optical trapping*. **Talk** presented at the Australian Institute of Physics Congress, Australian National University, Canberra, ANU, Australia (2014).